⌗៸៸ mary ꞌꞋ ࣪𓂃 ‹𝟹
2022-05-20T07:26:45+00:00
其实就是SVM里的投票预测问题。数学太差了[s:ac:擦汗],带数学家们能提供下思路吗。该咋求这个$\omega$和$b$ [s:ac:咦]
[img]https://img.nga.178.com/attachments/mon_202205/29/-7Qnxgg-an3gKtT1kSho-7c.jpg[/img]
$$
f_1(x) = sign(\omega_1x+b_1) \\
f_2(x) = sign(\omega_2x+b_2) \\
f_3(x) = sign(\omega_3x+b_3) \\
其中sign(x) =
\begin{cases}
1,\quad x>0 \\
-1,x<0
\end{cases}
\\
若f(x) = sign(f_1(x)+f_2(x)+f_3(x)) \\
问是否存在一个\omega和b 使得\\
\omega x + b = f(x) = sign(f_1(x)+f_2(x)+f_3(x))
$$
[img]https://img.nga.178.com/attachments/mon_202205/29/-7Qnxgg-an3gKtT1kSho-7c.jpg[/img]
$$
f_1(x) = sign(\omega_1x+b_1) \\
f_2(x) = sign(\omega_2x+b_2) \\
f_3(x) = sign(\omega_3x+b_3) \\
其中sign(x) =
\begin{cases}
1,\quad x>0 \\
-1,x<0
\end{cases}
\\
若f(x) = sign(f_1(x)+f_2(x)+f_3(x)) \\
问是否存在一个\omega和b 使得\\
\omega x + b = f(x) = sign(f_1(x)+f_2(x)+f_3(x))
$$